Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
International Journal of High Performance Computing Applications ; 37(1):45-57, 2023.
Article in English | Scopus | ID: covidwho-2242698

ABSTRACT

As a theoretically rigorous and accurate method, FEP-ABFE (Free Energy Perturbation-Absolute Binding Free Energy) calculations showed great potential in drug discovery, but its practical application was difficult due to high computational cost. To rapidly discover antiviral drugs targeting SARS-CoV-2 Mpro and TMPRSS2, we performed FEP-ABFE–based virtual screening for ∼12,000 protein-ligand binding systems on a new generation of Tianhe supercomputer. A task management tool was specifically developed for automating the whole process involving more than 500,000 MD tasks. In further experimental validation, 50 out of 98 tested compounds showed significant inhibitory activity towards Mpro, and one representative inhibitor, dipyridamole, showed remarkable outcomes in subsequent clinical trials. This work not only demonstrates the potential of FEP-ABFE in drug discovery but also provides an excellent starting point for further development of anti-SARS-CoV-2 drugs. Besides, ∼500 TB of data generated in this work will also accelerate the further development of FEP-related methods. © The Author(s) 2022.

2.
Biomolecules ; 12(12)2022 11 23.
Article in English | MEDLINE | ID: covidwho-2123516

ABSTRACT

Since its first appearance in April 2021, B.1.617.2, also termed variant Delta, catalyzed one major worldwide wave dominating the second year of coronavirus disease 2019 (COVID-19) pandemic. Despite its quick disappearance worldwide, the strong virulence caused by a few point mutations remains an unsolved problem largely. Along with the other two sublineages, the Delta variant harbors an accumulation of Spike protein mutations, including the previously identified L452R, E484Q, and the newly emerged T478K on its receptor binding domain (RBD). We used molecular dynamics (MD) simulations, in combination with free energy perturbation (FEP) calculations, to examine the effects of two combinative mutation sets, L452R + E484Q and L452R + T478K. Our dynamic trajectories reveal an enhancement in binding affinity between mutated RBD and the common receptor protein angiotensin converting enzyme 2 (ACE2) through a net increase in the buried molecular surface area of the binary complex. This enhanced binding, mediated through Gln493, sets the same stage for all three sublineages due to the presence of L452R mutation. The other mutation component, E484Q or T478K, was found to impact the RBD-ACE2 binding and help the variant to evade several monoclonal antibodies (mAbs) in a distinct manner. Especially for L452R + T478K, synergies between mutations are mediated through a complex residual and water interaction network and further enhance its binding to ACE2. Taking together, this study demonstrates that new variants of SARS-CoV-2 accomplish both "attack" (infection) and "defense" (antibody neutralization escape) with the same "polished sword" (mutated Spike RBD).


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , COVID-19/genetics , COVID-19/immunology , Protein Binding/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Virulence/genetics , Point Mutation , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Allosteric Regulation , Protein Domains/genetics
3.
Chem Phys ; 564: 111709, 2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2041614

ABSTRACT

Inhibiting the biological activity of SARS-CoV-2 Mpro can prevent viral replication. In this context, a hybrid approach using knowledge- and physics-based methods was proposed to characterize potential inhibitors for SARS-CoV-2 Mpro. Initially, supervised machine learning (ML) models were trained to predict a ligand-binding affinity of ca. 2 million compounds with the correlation on a test set of R = 0.748 ± 0.044 . Atomistic simulations were then used to refine the outcome of the ML model. Using LIE/FEP calculations, nine compounds from the top 100 ML inhibitors were suggested to bind well to the protease with the domination of van der Waals interactions. Furthermore, the binding affinity of these compounds is also higher than that of nirmatrelvir, which was recently approved by the US FDA to treat COVID-19. In addition, the ligands altered the catalytic triad Cys145 - His41 - Asp187, possibly disturbing the biological activity of SARS-CoV-2.

4.
Comput Struct Biotechnol J ; 20: 4984-5000, 2022.
Article in English | MEDLINE | ID: covidwho-2007640

ABSTRACT

Surfactant protein D (SP-D) is an essential component of the human pulmonary surfactant system, which is crucial in the innate immune response against glycan-containing pathogens, including Influenza A viruses (IAV) and SARS-CoV-2. Previous studies have shown that wild-type (WT) SP-D can bind IAV but exhibits poor antiviral activities. However, a double mutant (DM) SP-D consisting of two point mutations (Asp325Ala and Arg343Val) inhibits IAV more potently. Presently, the structural mechanisms behind the point mutations' effects on SP-D's binding affinity with viral surface glycans are not fully understood. Here we use microsecond-scale, full-atomistic molecular dynamics (MD) simulations to understand the molecular mechanism of mutation-induced SP-D's higher antiviral activity. We find that the Asp325Ala mutation promotes a trimannose conformational change to a more stable state. Arg343Val increases the binding with trimannose by increasing the hydrogen bonding interaction with Glu333. Free energy perturbation (FEP) binding free energy calculations indicate that the Arg343Val mutation contributes more to the increase of SP-D's binding affinity with trimannose than Asp325Ala. This study provides a molecular-level exploration of how the two mutations increase SP-D binding affinity with trimannose, which is vital for further developing preventative strategies for related diseases.

5.
International Journal of High Performance Computing Applications ; 2022.
Article in English | Web of Science | ID: covidwho-2005565

ABSTRACT

As a theoretically rigorous and accurate method, FEP-ABFE (Free Energy Perturbation-Absolute Binding Free Energy) calculations showed great potential in drug discovery, but its practical application was difficult due to high computational cost. To rapidly discover antiviral drugs targeting SARS-CoV-2 M- pro and TMPRSS2, we performed FEP-ABFE-based virtual screening for similar to 12,000 protein-ligand binding systems on a new generation of Tianhe supercomputer. A task management tool was specifically developed for automating the whole process involving more than 500,000 MD tasks. In further experimental validation, 50 out of 98 tested compounds showed significant inhibitory activity towards M- pro , and one representative inhibitor, dipyridamole, showed remarkable outcomes in subsequent clinical trials. This work not only demonstrates the potential of FEP-ABFE in drug discovery but also provides an excellent starting point for further development of anti-SARS-CoV-2 drugs. Besides, similar to 500 TB of data generated in this work will also accelerate the further development of FEP-related methods.

6.
Proc Natl Acad Sci U S A ; 117(44): 27381-27387, 2020 11 03.
Article in English | MEDLINE | ID: covidwho-867659

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global crisis. There is no therapeutic treatment specific for COVID-19. It is highly desirable to identify potential antiviral agents against SARS-CoV-2 from existing drugs available for other diseases and thus repurpose them for treatment of COVID-19. In general, a drug repurposing effort for treatment of a new disease, such as COVID-19, usually starts from a virtual screening of existing drugs, followed by experimental validation, but the actual hit rate is generally rather low with traditional computational methods. Here we report a virtual screening approach with accelerated free energy perturbation-based absolute binding free energy (FEP-ABFE) predictions and its use in identifying drugs targeting SARS-CoV-2 main protease (Mpro). The accurate FEP-ABFE predictions were based on the use of a restraint energy distribution (RED) function, making the practical FEP-ABFE-based virtual screening of the existing drug library possible. As a result, out of 25 drugs predicted, 15 were confirmed as potent inhibitors of SARS-CoV-2 Mpro The most potent one is dipyridamole (inhibitory constant Ki = 0.04 µM) which has shown promising therapeutic effects in subsequently conducted clinical studies for treatment of patients with COVID-19. Additionally, hydroxychloroquine (Ki = 0.36 µM) and chloroquine (Ki = 0.56 µM) were also found to potently inhibit SARS-CoV-2 Mpro We anticipate that the FEP-ABFE prediction-based virtual screening approach will be useful in many other drug repurposing or discovery efforts.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Drug Repositioning , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , COVID-19 , Chloroquine/pharmacology , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Cysteine Endopeptidases , Dipyridamole/pharmacology , Humans , Hydroxychloroquine/pharmacology , Molecular Docking Simulation , Molecular Structure , Pandemics , Pneumonia, Viral/drug therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL